Eisenstein Congruence on Unitary Groups and Iwasawa Main Conjectures for Cm Fields
نویسنده
چکیده
Introduction 1 1. Notation and conventions 8 2. Shimura varieties for unitary groups 13 3. Modular forms on unitary groups 23 4. Hida theory for unitary groups 36 5. Ordinary p-adic Eisenstein series on U(2, 1) 52 6. Constant terms of the p-adic Eisenstein series 68 7. Eisenstein ideal and p-adic L-functions 76 8. Application to the main conjecture for CM fields 93 Acknowledgments 107 References 107
منابع مشابه
Selmer Groups and the Eisenstein-klingen Ideal
0 Introduction The central point in the Bloch-Kato conjectures is to establish formulas for the order of the Selmer groups attached to Galois representations in terms of the special values of their L-functions. In order to give upper bound, the main way is to construct Euler systems following Kolyvagin. Besides, lower bounds have been obtained by using congruences between automorphic forms. So,...
متن کاملOn the transfer congruence between p-adic Hecke L-functions
We prove the transfer congruence between p-adic Hecke L-functions for CM fields over cyclotomic extensions, which is a non-abelian generalization of the Kummer’s congruence. The ingredients of the proof include the comparison between Hilbert modular varieties, the q-expansion principle, and some modification of Hsieh’s Whittaker model for Katz’ Eisenstein series. As a first application, we prov...
متن کاملCohomology of Congruence Subgroups of Sl4(z). Iii
In two previous papers [AGM02,AGM08] we computed cohomology groups H(Γ0(N);C) for a range of levels N , where Γ0(N) is the congruence subgroup of SL4(Z) consisting of all matrices with bottom row congruent to (0, 0, 0, ∗) mod N . In this note we update this earlier work by carrying it out for prime levels up to N = 211. This requires new methods in sparse matrix reduction, which are the main fo...
متن کاملCohomology of congruence subgroups of SL4(ℤ). III
In two previous papers we computed cohomology groups H(Γ0(N);C) for a range of levels N , where Γ0(N) is the congruence subgroup of SL4(Z) consisting of all matrices with bottom row congruent to (0, 0, 0, ∗) mod N . In this note we update this earlier work by carrying it out for prime levels up to N = 211. This requires new methods in sparse matrix reduction, which are the main focus of the pap...
متن کاملEisenstein Hecke Algebras and Conjectures in Iwasawa Theory
We formulate a weak Gorenstein property for the Eisenstein component of the p-adic Hecke algebra associated to modular forms. We show that this weak Gorenstein property holds if and only if a weak form of Sharifi’s conjecture and a weak form of Greenberg’s conjecture hold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014